Prospects for Proton Accelerators Driven by the Radiation Pressure from a Sub-pw Co2 Laser *

نویسندگان

  • M. Polyanskiy
  • I. Pogorelsky
  • V. Yakimenko
  • I. Ben-Zvi
  • Z. Najmudin
چکیده

Laser acceleration of ion beams is normally realized via irradiating thin-foil targets with near-IR solid-state lasers with up to petawatt (PW) peak power. Despite demonstration of significant achievements, further progress towards practical application of such beam sources is hindered by the challenges inherent in constructing still more intense and higher-contrast lasers. Our recent studies of the Radiation Pressure Acceleration (RPA) indicate that the combination of a 10-μm CO2 laser with a gas jet target offers a unique opportunity for a breakthrough in the field. Strong power scaling of this regime holds the promise of achieving the hundreds of MeV proton beams with just sub-PW CO2 laser pulses. Generation of such pulses is a challenging task. We discuss a strategy of the CO2 laser upgrade aimed to providing a more compact and economical hadron source for cancer therapy. This include optimization of the 10μm short-pulse generation, higher amplification in the CO2 gas under combined isotopic and power broadening effects, and the pulse shortening to a few laser cycles (150-200 fs) via self-chirping and the consecutive dispersive compression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing an approprate solenoid and magnetic field for the HZDR laser-driven beamline

Nowadays, due to the high costs and large dimensions of the conventional proton accelerators, other optimal methods for producing the proton beam have been studied. Using of Laser-driven proton accelerators is one of the important and new methods. In laser-driven ion acceleration, a highly ultra-intense laser pulse interacts with solid density targets and will create a plasma media that will ac...

متن کامل

Terahertz-driven linear electron acceleration

The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m(-1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequen...

متن کامل

Role of Lasers in Linear Accelerators

While time-dependent electromagnetic fields using microwave technology have been exploited for decades in acceleration and manipulation of charged particle beams, modern lasers stand poised to be exploited for these purposes with great promise. The advent of compact sub-picosecond terawatt lasers has renewed the interest in phenomena that involve scattering or collective interaction of lasers w...

متن کامل

Proton Acceleration in Co2 Laser-plasma Interactions at Critical Density∗

Over the last several years, the Target Normal Sheath Acceleration (TNSA) mechanism in solid density plasmas produced by a laser pulse has achieved proton energies up to 10’s of MeV and quasi-monoenergetic beams at lower energies. Although solid-target experiments have demonstrated high-charge and low-emittance proton beams, little work has been done with gaseous targets which in principle can ...

متن کامل

Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 10(7)-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011